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ABSTRACT: 

This study investigates pure bending analysis of thin rectangular flat plate with all edge clamped carrying uniformly distributed 

load using Euler-Bernoulli residual force equilibrium equation. The analysis was accomplished by carrying out direct 

differentiation of total potential energy functional of a rectangular flat plate with respect to the displacement function, w (x, y) to 

obtain the general Euler-Bernoulli residual force equilibrium equation for the plate.  The study used direct integration to solve 

the Euler-Bernoulli residual force equilibrium equation of plates to obtain the exact general deflection equation with unknown 

coefficients. The boundary conditions of the all edges clamped (CCCC) plate were satisfied to obtain the particular solution for 

CCCC plate. Euler-Bernoulli residual force equilibrium equation was at this point used to obtain the exact coefficient of 

deflection, A by employing the particular solution of CCCC plate obtained earlier on. With the exact shape functions and the 

corresponding exact coefficient of CCCC plate obtained, the study went on to determine the exact central deflection and exact 

midspan bending moments for the CCCC plate. The result of the present study was compared with the results of Ibearugbulem 

(2014). The results obtained herein showed an average percentage difference of 3.35% between the present study and 

Ibearugbulem, 2014. The method is simple and devoid of complexity. 

 

KEYWORDS: Euler-Bernoulli Residual Force, Weighted Residual Force, Shape Function, Coefficient of Deflection, 

Partial Differential Equation. 

NOTATIONS 

A: Coefficient of deflection, a and b: Rectangular plate 

lateral dimensions, βx: Coefficient of maximum moment in 

x direction, βy: Coefficient of maximum moment in y 

direction, C: Clamped support, CCCC: All edges of plate 

are clamped, D: Modulus of flexural rigidity of the plate, 

E: Young’s modulus, ɛ: Normal strain, F: Euler-Bernoulli 

form of total equilibrium of forces,  F̅: Weighted residual 

form of total equilibrium of forces, G: Torsional modulus 

of elasticity of the plate, g: Euler-Bernoulli form of 

equilibrium of forces at an arbitrary point, h: Shape 

function of the plate under consideration, KD: Coefficient 

of maximum deflection, Ksx: Coefficient of maximum 

shear force in x direction, Ksy: Coefficient of maximum 

shear force in y direction, Mx: Moment in x direction, My: 

Moment in y direction, Mxy: Moment in x-y direction, Mx: 

Moment in x direction, P: Aspect ratio of rectangular plate. 

That is P = a/b, Q: Non dimensional axis (quantity) parallel 

to y axis. Q = y/b, q: Distributed load intensity, R: Non 

dimensional axis (quantity) parallel to x axis, R = x/a, t: 

Plate thickness, U: Internal (strain) energy, X: The primary 

axis of the plate. That is the shorter of the two axes of the 

major plane of the plate, Y: The secondary axis of the plate. 

That is the longer of the two axes of the major plane of the 

plate, Z: The tertiary axis of plate. That is the shortest of 

the three axes of the plate, W = w (x, y): Plate displacement 

in z direction. It is a function of x and y, Π:  Potential 

energy functional of the plate, µ: Poisson’s ratio, σ: Normal 

stress of the plate, τ: Shear stress of the plate, γ: Shear strain 

of the plate 

 

1.0 INTRODUCTION 

A flat plate, like a straight beam carries lateral load by 

bending, Ibearugbulem (2014). Plate bending analyses is 

categorized into two types based on thickness to breadth 

ratio: Thick plate and Thin plate analyses. According to 

Timoshenko & Woinosky-Krieger (1959), if the thickness 

to width ratio of the plate is less than 0.1 and the maximum 

deflection is less than one tenth of thickness, then the plate 

is classified as thin plate. The well-known Kirchhoff plate 

theory is used for the analysis of such thin plates. On the 

other hand, Mindlin plate theory is used for thick plate 

where the effect of shear deformation is included, Mindlin 

(1951). The Kirchhoff–Love theory is an extension 

of Euler–Bernoulli beam theory to thin plates and was 

developed in 1888 by Love, A. E. H. (1888). The classical 

beam theory was first applied to plates and shells by Love 
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and Kirchhoff, (Reddy, 2007). Kirchhoff–Love plate 

theory is commonly known as Kirchhoff’s plate theory.  

The general Euler-Bernoulli theory for a continuum in 

equilibrium can be represented mathematically as given in 

Equation (1.1); 

F =
dΠ

dw
= ∬ [∆w −

q

D
] dx dy = 0                                    (1.1) 

Where;   

w =  displacement function,  

∆w = derivative of the displacement function  

Π =  total potential energy functional of a plate 

D = flexural rigidity of the plate, 

dx = elemental length in x − axis,  

dy = elemental distance in y − axis and  

q is the applied load on the plate. 

 

The displacement function, w in Equation (1.1) is 

substituted with a deflection function, h which is often 

preselected such that the specified boundary conditions of 

the problem are satisfied. The preselected deflection 

(shape) function, h has unknown coefficient, A. 

substituting the shape function, h and the coefficient, A, for 

the displacement function, w, in Equation (1.1) results to 

Equation (1.2). 

F =
dΠ

dw
= ∬ [A∆h −

q

D
] dx dy = 0                             (1.2) 

A =  coefficient of deflection, 

∆h is derivative of deflecion(shape) function 

Rearrangement of Equation (1.2), gave rise to Equation 

(1.3); 

A =
q D⁄

∬ ∆hdxdy
                                                                   (1.3) 

 

The coefficient of the deflection function, A is obtained 

from Equation (1.3) such that Equation (1.1) is satisfied in 

the exact sense.  Therefore, the residual force from 

Equation (1.1) is zero. This agrees with Newton’s third law 

of motion which states that ‘For every action, there is an 

equal and opposite reaction’. This is the sole condition for 

static equilibrium. Any analysis that circumvents 

Equations (1.1) and (1.3) in its process will result in 

approximate solution. 

 

Ibearugbulem, (2013) noted that earlier scholars such as 

Navier (1823) and Levy (1899) assumed some functions in 

form of trigonometric series that satisfied the boundary 

conditions of the particular plates and substituted them into 

the governing equation (Equation (1.1)) before integration. 

One of the notable limitations to this approach is the 

difficulty in assuming a satisfying shape function. This led 

to the adoption of the weighted residual method by later 

scholars. In weighted residual method (WRM), an 

approximate solution of a boundary value problem is 

obtained by using the corresponding integral formulation. 

An approximate form for the solution (deflection function, 

h) is assumed in terms of a series containing known 

functions and unknown coefficients (Reddy, 2007). When 

this form is substituted in the integral formulation, a set of 

algebraic equations in terms of the unknown coefficients 

was obtained. Solution of the algebraic equations 

determines the coefficients.  

Multiplying Equation (1.1) with any weighting function for 

instance the shape function h, yielded Equation (1.4). 

Fh =
dΠ

dw
h = ∬ [∆w. h −

q

D
] h dxdy 

       = ∬ [A∆h. h −
q

D
h] dxdy = 0                                  (1.4) 

Equation (1.4) is the weighted residual force equation of a 

plate. It is similar to Equation (1.1). Equation (1.1) is the 

true force equation, while Equation (1.4) is the quasi-force 

equation. Like Equation (1.3), the coefficient of the 

deflection function, A, can similarly be calculated by 

making A, the subject of the formula in Equation (1.4) as 

given in Equation (1.5).  

A = q D⁄
∬ hdxdy

∬ ∆h. hdxdy
                                                      (1.5) 

Equation (1.5) is characterized by its accelerated 

convergence. Hence, the sole reason why it is always 

employed in analysis, especially when dealing with 

approximate deflection functions with unknown 

coefficients. If the displacement function is approximate, it 

cannot be used in Euler-Bernoulli coefficient Equation 

(1.3). Most weighted residual force method (WRM) like 

Galerkin and Ritz employed in plate analysis assumed 

shape function whose boundary conditions satisfied 

Equation (1.4) and went on to use Equation (1.5) to 

determine the unknown coefficients of the shape function. 

The present work tried to use the residual equation 

(Equation (1.1)) and the coefficient equation (Equation 

(1.3)) to determine the maximum deflection and moment in 

CCCC plate type.
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2.0 THEORETICAL BACKGROUND 

 

 

 

 

 

 

 

 

 

Equation (2.1) is the total or overall potential energy 

functional for isotropic rectangular flat plate. The equation 

was derived by Ibearugbulem (2014) using Ritz approach.   

Π =
D

2
∫ ∫ ([

∂2w

∂x2
]

2

+ 2 [
∂2w

𝜕𝑥𝜕𝑦
]

2

+ [
∂2w

∂y2
]

2

)
b

0

a

0

dx dy

− q ∫ ∫ w
b

0

a

0

∂x ∂y                               (2.1) 

Equation (2.1) can be written in non-dimensional form in 

terms of the Cartesian coordinates x and y, and the lateral 

dimensions a and b, as shown in Equation (2.2). 

Π

=
abD

2a4
∫ ∫ ([

∂2w

∂R2
]

2

+
2

p2
[

∂2w

𝜕𝑅𝜕𝑄
]

2

+ [
∂2w

∂Q2
]

2

)
b

0

a

0

dR dQ

− abq ∫ ∫ w
b

0

a

0

∂R ∂Q                                                        (2.2) 

Where R =  
x

a
,    Q =  

y

b
 and  

P =
a

b
, the aspect ratio of the plate 

D =
Et3

12(1 − μ2)
                                                                 (2.3) 

D is the flexural rigidity. E is Young’s modulus of 

elasticity, t is the thickness of the plate, µ is the Poisson 

ratio and, w is the shape function (deflection function).  

Equation (2.4) is obtained by expansion and further 

simplification of Equation (2.2).  

Π =
abD

2a4
∫ ∫ (

∂4𝑤

∂R4
+

2

p2

∂4w

∂R2 ∂Q2
+

1

p4

∂4w

∂Q4
)

b

0

a

0

dR dQ

− abq ∫ ∫ dR dQ
b

0

a

0

                           (2.4) 

SOLUTION OF TOTAL ENERGY FUNCTIONAL 

BY EULER-BERNOULLI RESIDUAL FORCE 

APPROACH. 

From elementary physics, Energy is defined as the product 

of force, F and distance, w (x). Mathematically, this is as 

expressed in Equation (2.5). 

Energy, П = Force, F × Distance, w(𝑥)                      (2.5) 

Making force, F in Equation (2.5) the subject of the 

relationship yields Equation (2.6). 

Therefore, Force, F =  
dEnergy

dw(𝑥)
 =

dΠ

dw
                       (2.6) 

Differentiating Equation (2.6) with respect to deflection, w 

gives resultant force as zero.  

F =
dΠ

dw
= ∫ ∫ (

∂4w

∂R4
+

2

p2

∂4w

∂R2 ∂Q2
+

1

p4

∂4w

∂Q4

1

0

1

0

−
qa4

D
) dR dQ = 0                            (2.7) 

Let deflection be defined as: 

w = Ah                                                                                (2.8) 

Where A is Coefficient of deflection and h is shape 

function (deflection function) 

Substituting Equation (2.8) into Equation (2.7) gives and 

simplifying yields Equation (2.9): 

A ∫ ∫ (
∂4h

∂R4
+

2

p2

∂4h

∂R2 ∂Q2
+

1

p4

∂4h

∂Q4
)

1

0

1

0

dR dQ

=
qa4

D
                                                 (2.9) 

That is: 

A[k1 + k2 + k3] =
qa4

D
                                                  (2.10) 

Where: 

k1 = ∫ ∫
∂4h

∂R4

1

0

1

0

dR dQ                                                  (2.11) 

k2 = ∫ ∫
2

p2

∂4h

∂R2 ∂Q2

1

0

1

0

dR dQ                                     (2.12) 

k3 = ∫ ∫
1

p4

∂4h

∂Q4

1

0

1

0

dR dQ                                             (2.13) 

Thus, rearranging Equation (2.10) gives: 

A =
1

[k1 + k2 + k3]

qa4

D
                                                 (2.14) 

Let Equation (2.14) be represented as shown in Equation 

(2.15). 

A = kT

qa4

D
                                                                      (2.15) 

Where: 

kT =
1

[k1 + k2 + k3]
                                                     (2.16) 

a 

b 

x 

y 

Figure 1. Schematic representation of CCCC plate carrying 

 uniformly distributed load 

P = a bൗ  

C 

C 

C C 
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Substituting Equation (2.15) into Equation (2.10) yields 

Equation (2.17). 

kT

qa4

D
 [k1 + k2 + k3] =

qa4

D
                                      (2.17) 

On further simplification of Equation (2.17), Equation 

(2.18) is obtained. 

kT [k1 + k2 + k3] = 1                                                   (2.18) 

Or 

kT k1 + kTk2 + kTk3 = 1                                             (2.19) 

For the integral of Equation (2.7) to be zero, it implies that 

the integrand is zero. This is expressed in Equation (2.20)  

∂4w

∂R4
+

2

p2

∂4w

∂R2 ∂Q2
+

1

p4

∂4w

∂Q4
−

qa4

D
 = 0                  (2.20) 

Substituting Equation (2.19) into Equation (2.7) yields 

Equation (2.21). 

∫ ∫ (
∂4w

∂R4
+

2

p2

∂4w

∂R2 ∂Q2
+

1

p4

∂4w

∂Q4

1

0

1

0

−
qa4

D
[kT k1 + kTk2 + kTk3]) dRdQ

= 0                                                      (2.21) 

This can be rearranged as shown in Equation (2.22). 

∫ ∫ ([
∂4w

∂R4
−

qa4

D
kT k1] + [

2

p2

∂4w

∂R2 ∂Q2
−

qa4

D
kTk2]

1

0

1

0

+ [
1

p4

∂4w

∂Q4
−

qa4

D
kTk3]) dR dQ

= 0                                                      (2.22) 

One of the conditions for which Equation (2.22) will be 

true is if each of these integrals is zero. That is: 

∫ ∫ ([
∂4w

∂R4
−

qa4

D
kT k1])

1

0

1

0

dR dQ = 0                    (2.23) 

∫ ∫ ([
2

p2

∂4w

∂R2 ∂Q2
−

qa4

D
kTk2])

1

0

1

0

dR dQ = 0        (2.24) 

∫ ∫ ([
1

p4

∂4w

∂Q4
−

qa4

D
kTk3])

1

0

1

0

dR dQ = 0                (2.25) 

Let us at this point split deflection into wx and wy as: 

w = wx. wy                                                                        (2.26) 

Substituting Equation (2.26) into Equations (2.23), (2.24) 

and (2.25) and rearranging the resulting equations gives 

respectively: 

∫ ∫ ([wy

∂4wx

∂R4
−

qa4

D
kT k1])

1

0

1

0

dR dQ = 0           (2.27) 

∫ ∫ ([
2

p2

∂2wx

∂R2

∂2wy

∂Q2
−

qa4

D
kTk2])

1

0

1

0

dR dQ = 0  (2.28) 

∫ ∫ ([
wx

p4

∂4wy

∂Q4
−

qa4

D
kTk3])

1

0

1

0

dR dQ = 0            (2.29) 

Carrying out the integration of Equations (2.27) with 

respect to Q and Equation (2.29) with respect to R gives 

respectively: 

∫ ([wx

∂4wx

∂R4
−

qa4

D
kT k1])

1

0

dR = 0                      (2.30) 

∫ ([
wy

p4

∂4wy

∂Q4
−

qa4

D
kTk3])

1

0

 dQ = 0                      (2.31) 

For Equations (2.30) and (2.31) to be true, their integrands 

must be zero. That is: 

∂4wx

∂R4
=

qa4

Dwx

kT k1                                                         (2.32) 

∂4wy

∂Q4
=

qa4

Dwy

kTk3p4                                                     (2.33) 

Let: 

Ax =
qa4

Dwx

kT k1                                                             (2.34) 

Ay =
qa4

Dwy

kTk3p4                                                          (2.35) 

A =
Ax

24
.
Ay

24
                                                                      (2.36) 

Equating Equations (2.32) and (2.34), and (2.33) and 

(2.35), shows that; 

∂4wx

∂R4
= Ax                                                                        (2.37) 

∂4wy

∂Q4
= Ay                                                                        (2.38) 

Solving Equations (2.37) and (2.38) by direct integration 

shall respectively give: 

wx = a0 + a1R + a2

R2

2
+ a3

R3

6
+ Ax

R4

24
                  (2.39) 

wy = b0 + b1Q + b2

Q2

2
+ b3

Q3

6
+ Ay

Q4

24
                (2.40) 

Multiplying Equations (2.39) and (2.40) gives: 

w = wx. wy 

= (a0 + a1R + a2

R2

2
+ a3

R3

6
+ Ax

R4

24
) . (b0 + b1Q

+ b2

Q2

2
+ b3

Q3

6
+ Ay

Q4

24
)           (2.41) 

 

Particular solution for CCCC plate 

The boundary conditions of CCCC plate 

w(R = 0) = 0; w′𝑅(R = 0) = 0                               (2.42) 

w(R = 1) = 0; w′𝑅(R = 1) = 0                               (2.43) 

w(Q = 0) = 0; w′𝑄(Q = 0) = 0                               (2.44) 

w(Q = 1) = 0; w′𝑄(Q = 1) = 0                               (2.45) 

Substituting these boundary conditions into Equation 

(2.41) and solving gives; 
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a0 = 0, a1 = 0, a2 =
Ax

12
, a3 = −

Ax

2
, and  

b0 = 0, b1 = 0, b2 =
Ay

12
, b3 = −

Ay

2
 

Substituting back these constants into Equation (2.41) 

yields Equations (2.46). 

w = A(R2 − 2R3 + R4) . (Q2 − 2Q3 + Q4)               (2.46) 

The exact deflection function, h for a CCCC plate is given 

as in Equation (2.47) 

h = (R2 − 2R3 + R4) . (Q2 − 2Q3 + Q4)                  (2.47) 

 

Determination of the exact coefficient of deflection of a 

CCCC plate. 

Partial differentiation and integration of Equation (2.46) 

gave the following stiffness coefficient values for CCCC 

plate. The effective length of a CCCC plate is 0.67L. The 

lower limit is 0.165 and the upper limit is 0.835. Hence, the 

limits of this integration are 0.165 and 0.835.  

kx = ∫ ∫
d4w

dR4
dRdQ

0.835

0.165

0.835

0.165

= 0.499                        (2.48) 

 

kxy = ∫ ∫
d4w

dR2dQ2
dRdQ

0.835

0.165

0.835

0.165

= 0.136               (2.49) 

 

ky = ∫ ∫
d4w

dQ4
dRdQ

0.835

0.165

0.835

0.165

= 0.499                        (2.50) 

kq = ∫ ∫ dRdQ

0.835

0.165

0.835

0.165

= 0.449                                 (2.51)  

Making A, the subject of Equation (2.9) and simplifying 

the resulting equation will yield the general equation for 

exact coefficient of deflection of an isotropic flat plate 

subjected to uniformly distributed load as expressed in 

Equation (2.52).  

A =

qa4

D
kq

kx +
2

p2 kxy +
1

p4 ky

                                              (2.52) 

Substituting the values of Equation (2.48), Equation (2.49), 

Equation (2.50) and Equation (2.51) into Equation (2.52) 

yields the particular exact coefficient of deflection for 

CCCC plate. 

A =
qa4

D

0.449p4

(0.499p4 + 0.272p2 + 0.499)
                    (2.52) 

In non – dimensional form, for critical (maximum) 

deflections and moments will occur at the center of the 

plate where: 

R = 0.5 and Q = 0.5                                                       (2.53) 

Wmax = ((
1

256
)

0.449P4

0.499P4 + 0.272P4 + 0.499
 )

qa4

D
  

                                                                                            (2.54) 

Let maximum deflection be represented as shown in 

Equation (2.55) 

Wmax = kD

qa4

D
                                                               (2.55) 

Where kD, 

kD = ((
1

256
)

0.449P4

0.499P4 + 0.272P4 + 0.499
 )         (2.56) 

Mid-span moment in x and y directions. 

Mx = −D [
∂2w

∂x2
+ μ

∂2w

∂y2
]                                             (2.57) 

Equation (2.57) is bending moment equation of a two-

dimensional element from elementary theory of structure. 

Substituting Equation (2.3) and the second derivatives of 

Equation (2.46) into Equation (2.57) for Poisson ratio of 

0.3, R = Q = 0.5 yields Equation (2.58). 

Mx = 

[
0.01875

P2
+ 0.0625]

0.449P4

0.499P4 + 0.272P4 + 0.499
 qa2  

                                                                                              (2.58)  

Let maximum bending moment in x - direction be 

represented as shown in Equation (2.59) 

Mx = βxqa2                                                                       (2.59) 

Where βx is; 

βx 

= [
0.01875

P2
+ 0.0625]

0.449P4

0.499P4 + 0.272P4 + 0.499
 

                                                                                             (2.60) 

Similarly,  

MyC = 

[
0.0625

P2
+ 0.01875]

0.449P4

0.499P4 + 0.272P4 + 0.499
 qa2 

                                                                                            (2.61)  

Let maximum bending moment in y - direction be 

represented as shown in Equation (2.59) 

My = βyqa2                                                                      (2.62) 

Where βy is; 

βyC = 

[
0.0625

P2
+ 0.01875]

0.449P4

0.499P4 + 0.272P4 + 0.499
 

                                                                                             (2.63) 
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RESULTS AND DISCUSSIONS 

This study successfully obtained the exact deflection and 

coefficient of deflection using for an isotropic rectangular 

flat plate subjected to uniformly distributed load, q. the 

equations are reproduced here as Equations (2.64) and 

(2.65). The numerical values of deflection and bending 

moment factors at the centre of the plate for different aspect 

ratios are shown on the Table 1 and Table 2. Values of 

deflection factor obtained in the present study were 

compared with those obtained by Ibearugbulem (2014). 

Similarly, the values of bending moments obtained from 

this study were compared with those obtained in 

Ibearugbulem (2014). The average percentage difference 

between the two studies are 3.31% and 3.35% for 

deflection and bending moments in x and y directions 

respectively. 

The shape function obtained in the present study turns out 

to be the same as those assumed in the weighted residual 

approach. The coefficient of deflection however varied 

from those obtained in previous studies. This is the sole 

reason for variation in the two results. Since the results 

obtained from this study satisfies not only the plate 

boundary conditions but also satisfies Euler-Bernoulli 

residual force equation, and the exact coefficient of 

deflection equation was also used to obtained the 

coefficient of deflection in the present study, It is therefore 

recommend that this new Euler-Bernoulli residual force 

approach for isotropic rectangular flat CCCC plate analysis 

could be more easily used over the traditional weighted 

residual approximate methods. 

 

w = A(R2 − 2R3 + R4) . (Q2 − 2Q3 + Q4)             (2.64) 

A =
qa4

D

0.449p4

(0.499p4 + 0.272p2 + 0.499)
                  (2.65) 

 

 

Table 1. Values of deflection, kD 

P kD from present study kD from Ibearugbulem (2014) % difference b/w present study & Ibearugbulem (2014) 

1 0.00138 0.00133 3.63 

1.1 0.00165 0.00159 3.42 

1.2 0.00189 0.00182 3.58 

1.3 0.00210 0.00203 3.33 

1.4 0.00228 0.00221 3.21 

1.5 0.00244 0.00236 3.27 

1.6 0.00257 0.00249 3.21 

1.7 0.00269 0.0026 3.17 

1.8 0.00278 0.00269 3.25 

1.9 0.00286 0.00277 3.20 

2 0.00293 0.00284 3.09 

 

Table 2. Values of maximum bending moment in x and y directions 

P 
βx, present 

study 

βx, 

Ibearugbulem 

(2014) 

% diff. b/w present study 

& Ibearugbulem (2014)  

βy, present 

study 

βy, Ibearugbulem 

(2014) 

% diff. b/w previous study 

& present study  

1 0.02870 0.02769 3.54 0.02870 0.02769 3.54 

1.1 0.03287 0.03172 3.50 0.02967 0.02863 3.51 

1.2 0.03649 0.03522 3.49 0.03003 0.02899 3.48 

1.3 0.03956 0.03820 3.45 0.02996 0.02893 3.44 

1.4 0.04212 0.04069 3.40 0.02960 0.02859 3.41 

1.5 0.04424 0.04275 3.37 0.02906 0.02809 3.34 

1.6 0.04598 0.04446 3.31 0.02843 0.02749 3.29 

1.7 0.04742 0.04587 3.27 0.02775 0.02685 3.26 

1.8 0.04861 0.04703 3.24 0.02708 0.02620 3.24 

1.9 0.04959 0.04800 3.20 0.02642 0.02558 3.17 

2 0.05041 0.04881 3.17 0.02579 0.02498 3.14 
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